Normal range of serum Amphiregulin in healthy adult human females

Esther A. Peterson, Shabana Shabbeer, Paraic A. Kenny *

Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

ARTICLE INFO

Article history:
Received 22 August 2011
Received in revised form 9 December 2011
Accepted 27 December 2011
Available online xxxx

Keywords:
Serum biomarker
Epidermal Growth Factor Receptor
Cytokine
Breast cancer
Amphiregulin

ABSTRACT

Objectives: Prior to large studies in breast cancer patients, we have sought to establish the normal range of a potential serum biomarker, Amphiregulin, in healthy women and to determine whether sampling during the menstrual cycle influences the detected Amphiregulin levels.

Design and methods: Serum Amphiregulin levels were quantified using a commercially available ELISA in 85 normal female donors.

Results: The range of circulating Amphiregulin was 0–4467 pg/mL. The majority of women had no detectable circulating Amphiregulin (n = 54), and only five women had levels exceeding 500 pg/mL. Serum Amphiregulin levels did not vary significantly during the menstrual cycle (n = 7 women).

Conclusions: Detection of circulating Amphiregulin in a significant minority of healthy women suggests that it may not have the specificity necessary for a population screening tool; however, its potential utility for monitoring response to treatment or disease progression should be examined in breast cancer cases.

© 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

1. Introduction

Amphiregulin (AREG) is a ligand for the Epidermal Growth Factor Receptor (EGFR). It was initially identified as a secreted factor in the ERx-positive MCF7 breast cancer cell line [1] and was shown to be estrogen-responsive in these cells [2]. In the mouse, Amphiregulin expression is required for normal mammary gland development [3], and is a direct transcriptional target of ER-alpha [4] and a key effector of estrogen [5,6] for this developmental process. In addition, a surge of Amphiregulin production in ovarian follicular fluid, driven by luteinizing hormone, is believed to be an important precursor of ovulation [7]. Modest cyclic changes in Amphiregulin have also been reported in the endometrium [8].

In breast cancer, Amphiregulin is highly expressed in estrogen receptor positive tumors, where it is cleaved at the cell surface by TACE/ADAM17 to release a soluble EGFR ligand which drives tumor cell proliferation [9]. In addition to breast tumors, AREG is highly expressed in several other cancers, including ovarian [10], endometrial [11], colorectal, head and neck squamous cell carcinoma (HNSCC) and non-small cell lung carcinoma (NSCLC), and has been reported to play a role in proliferation, survival, angiogenesis, invasion and metastasis [12].

Because tumors frequently have a leaky vasculature and because Amphiregulin is efficiently shed into the extracellular spaces of the tumor, it may prove to be a potentially useful serum biomarker for the presence or recurrence of various types of cancer, or for monitoring response to therapy. In order to be useful as a cancer biomarker, the reference range for Amphiregulin in the cancer-free population must first be determined. In this study, we evaluated serum samples from 85 women to determine the normal range of circulating Amphiregulin. In addition, to exclude potential cyclic effects due to hormonal fluctuations, we performed serial analysis of circulating Amphiregulin levels in 7 women over a complete menstrual cycle. We find that Amphiregulin levels are below the threshold of detection in approximately two thirds of the women and also that serum Amphiregulin levels do not vary substantially under the influence of cyclic hormonal changes during the menstrual cycle.

2. Methods

2.1. Subjects

Serum samples were acquired in batches from anonymous donors recruited by two commercial repositories (Innovative Research, Novi, MI and Promeddx, Norton, MA). All studies were carried out with the approval of the Institutional Review Board of the Albert Einstein College of Medicine. Donors were non-pregnant women with no current or prior cancer diagnosis, and no history of diabetes, hepatitis B or C, or HIV.

2.2. ELISA analysis

The human Amphiregulin DuoSet ELISA Development System (R & D Systems, Minneapolis, MN) was used to analyze Amphiregulin levels in serum samples according to the manufacturer’s instructions. Briefly,
2.3. Statistical analysis

All data were analyzed using GraphPad Prism (version 5.03).

3. Results

3.1. Stability of Amphiregulin in serum samples

We have previously described the use of a commercially available ELISA assay for the quantification of human Amphiregulin in cell culture supernatants [9]. In this study, we adapted the assay for use with human serum samples. One major barrier to use of a protein analyte as a serum biomarker is the sensitivity of the marker to degradation or precipitation during freezing and thawing. We selected a serum sample from our cohort and subjected it to a series of five freeze-thaw cycles. ELISA analysis of aliquots withdrawn after each thaw indicated that the measured level of Amphiregulin did not change significantly (Fig. 1).

![Figure 1](image-url)
Fig. 1. Stability of serum Amphiregulin following repeated freeze-thaw cycles. A sample of human serum was subjected to freezing on dry ice, followed by thawing to room temperature and extraction of an aliquot for analysis. Amphiregulin levels in aliquots after five such cycles were determined by ELISA.

3.2. Circulating Amphiregulin in healthy subjects

To determine the range of circulating Amphiregulin concentrations in the serum of healthy human females, we procured frozen serum samples from two commercial repositories. The associated demographic parameters available with these samples included age and, in some cases, race. Donors had no history of cancer or diabetes and samples tested negative for HIV and hepatitis B and C. Based on analysis with dilutions of recombinant Amphiregulin we determined that the sensitivity threshold of this ELISA assay was 20 pg/mL. Of the 85 women tested, 54 (64%) had levels below this threshold of detection. Sixteen women had circulating Amphiregulin levels between 21 and 100 pg/mL, and 15 women had levels in excess of 100 pg/mL (Fig. 2A). A breakdown of the data by age and race of the women is shown in Fig. 2B. Using age 50 as an approximate cut-off for menopause, there was no significant difference in the distribution of serum Amphiregulin levels between pre- and post-menopausal women.

3.3. Influence of menstrual cycle on circulating Amphiregulin levels

Because Amphiregulin is known to be regulated by both estrogen [2] and luteinizing hormone [7], one potential concern about its suitability as a biomarker is that levels of circulating Amphiregulin might vary substantially under the influence of the hormonal changes during the menstrual cycle. In that case, blood draws might need to be carefully timed in premenopausal women in future biomarker trials in cancer patients. To address this question, we evaluated the levels of circulating Amphiregulin in seven women over the course of a complete menstrual cycle. One woman was selected as she had no detectable circulating Amphiregulin (Fig. 3, gray line). In this case, there was no evidence of circulating Amphiregulin above the threshold of detection on any day of the cycle. In the other six cases, the levels of circulating Amphiregulin were stable over the length of each menstrual cycle.
tumor Amphiregulin were predictive of response to the EGFR blocking antibody, cetuximab [17–19]. Two small studies which examined the utility of serum Amphiregulin as a predictor of gefitinib response in NSCLC have yielded conflicting results, with one study suggesting that high levels of serum Amphiregulin were associated with response to gefitinib [15], and the other finding that high levels were associated with gefitinib insensitivity [14].

In those cases where high Amphiregulin levels were detected in the serum in the women in our cohort, the tissue or cell of origin remains unclear. Early work by Plowman et al. demonstrated that AREG mRNA is highly expressed in human placenta and ovary [20], while analysis of the raw microarray data from a larger set of tissues [21] suggest that Amphiregulin mRNA may also be highly expressed in lung. The extent to which the Amphiregulin produced locally within these tissues may contribute to total serum Amphiregulin is not known. Various leukocytes, including eosinophils [22], basophils [23] and mast cells [24] can be stimulated to produce Amphiregulin, raising the possibility that in some cases the high levels of Amphiregulin detected in the serum samples may result from an immune response. Although the donors in our study were believed to be drawn from the healthy population, we cannot formally exclude the possibility that one or more donors may have had cancer at the time of donation. Assays such as PSA for prostate cancer and CA125 for ovarian cancer [25] have had a pronounced effect on the management of these diseases, but similarly useful markers in breast cancer are lacking. These data pave the way for a more detailed study of the potential

Fig. 2. Serum Amphiregulin levels in healthy human females. A. Histogram showing the distribution of serum Amphiregulin levels among the study population. B. Analysis of serum Amphiregulin levels by age and race. The threshold of detection of the assay was 20 pg/mL.

utility of serum Amphiregulin as a biomarker in breast cancer patients. The high levels of Amphiregulin we observed in some women in our healthy cohort suggest that serum Amphiregulin may not have the necessary sensitivity and specificity for use as a population screening tool; however it may be found to have utility in selected subsets of breast cancer patients or in women at high risk of developing breast cancer.

Acknowledgments

This study was supported by a pilot project grant from the Albert Einstein Cancer Center and by a Career Catalyst Award from Susan G. Komen for the Cure (KG100888).

References

Fig. 3. Analysis of serum Amphiregulin levels during seven complete menstrual cycles. Amphiregulin levels from subjects of the indicated ages are shown. Date of onset of menses was known for all women and the ovulation date was estimated to be 14 days later.